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A structure is broken down into a number of substructures by means of the finite element 

method and the substructures are synthesized for the complete structure. The divided substruc- 

tures take two types : fixed-free and free-free elements. The flexibility and stiffness matrices of 

the free-free elements are the Moore-Penrose inverse of each other. Thus, it is not easy to 

determine the equilibrium equations of the complete structure composed of two mixed types of 

substructures. This study provides the general form of equilibrium equation of the entire 

structure through the process of assembling the equilibrium equations of substructures with end 

conditions of mixed types. Applications demonstrate that the proposed method is effective in the 

structural analysis of geometrically complicated structures. 
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I. Introduction 

Finite element models are utilized to obtain 

solutions for the displacements of structures sub- 

jected to static loads. Complete structures are 

very complex, and the finite element model of 

the entire structure might contain so many degrees 

of freedom that it would be infeasible to perform 

a structural analysis based on the finite element 

equations for the complete system of disturbed 

stress state and geometrical irregularity. Major 

components are often designed and produced 

by different organizations, and a finite element 

model of the entire structure is assembled. 

The static analysis of complex structures often 
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needs to be performed by means of substruc- 

turing. Substructuring identifies the process of 

the subdivision of the overall structure into two 

or more substructures. Greater emphasis has been 

placed on the study of modeling the static be- 

havior of individual substructures. 

The substructure synthesis method requires two 

steps: (1) the determination of the equilibrium 

equation of each substructure; (2) the substruc- 

ture synthesis to consider compatibility condi- 

tions at the interfaces. The end conditions of 

substructures can be considered as two types: 

fixed-free and free-free elements. The free-free 

elements represent the rigid body modes. Al- 

though the synthesis process of each substruc- 

ture requires the calculation of the displace- 

ment vector, the displacements of each free-free 

element can not be explicitly obtained because 

the flexibility and stiffness matrices are the 

Moore-Penrose inverse of each other. 

The substructure synthesis approach including 

free-free substructures depends on numerical 



1530 Hee Chang Eun, Sang-Yeol  Park and Eun- Tail,: Lee 

approaches to use Lagrange multipliers. There 
have been a few methods to develop approximate 

mathematical models for assembling the static 

behavior of each substructure. Based on a decom- 

position of the finite element model into sub- 

structures, Felippa and Park (1997) presented a 

direct flexibility method. Park, Justino F, and 

Felippa (1997) introduced an algebraically pati- 
tioned FETI method for the solution of struc- 

tural engineering problems. They (1998) also 

provided flexibility expressions for symmetric 

and unsymmetric free-free stiffnesses. However, 

this approach has a difficulty in determining the 

explicit form of Moore-Penrose relation of flexi- 

bility and stiffness matrices. Farhat, Lacour, and 

Rixen (1998) gave the iterative solution by sub- 

structuring methods of the large-scale systems of 

equations of the substructures discretized by line- 

ar multipoint constraints. 

The aim of this study is to derive the equili- 

brium equation of an entire structure subjected 

to linear constraints by extremizing the potential 

energy to consider constraint equations and utili- 

zing fundamental linear algebra. Modifying the 

derived equation, this study presents the general 

form of the equilibrium equation of the entire 
structure composed of free-free and fixed-flee 

substructures subjected to compatibility condi- 

tions or other types of linear constraints. Applica- 

tions demonstrate that the proposed method is 

effective and simple. 

2. Equilibrium Equations 
of Constrained Structures 

The static equilibrium equation is derived by 

minimizing total potential energy with respect to 

displacement vector. To do this, let us consider 

an n degrees of freedom structure with the total 

potential energy expressed as 

I I  1 r -  T ~  =~-u r~u-u r (1) 

in which I~ denotes the potential energy of the 
structure, u and F are the nX 1 generalized dis- 

placement and nodal force vectors. K was as- 

sumed as the n x n  positive definite stiffness 

matrix for this derivation. From equation (1), the 

equilibrium equation is obtained as 

K u = F  (2) 

The existence of constraints like compatibility 

leads to new type of equilibrium equation be- 

cause equation (l) and the constraints should 

be combined. Assume that the structure is sub- 
jected to m linear constraints written in matrix 

form as 

A u = b ,  m <  n (3) 

where A is m x  n real matrix and b is an m x  1 

vector. Although the equilibrium equations of 

the structure are given by equation (2), the real 

displacement responses of the structure must sat- 

isfy equation (3) by the existence of constraints. 

It indicates that the real responses should be 

determined by combining equations (1) and (3). 

To combine equations (1) and (3), they are 

rewritten as 

Y 1 : ½  (K1/Zu) "r (K1/2u) --uTF (3a) 

AK-1/2K1/2u = b  (3b) 

respectively. The general solution* of equation 

(3b) with respect to K1/Zu is obtained as 

K1/2u:  ( A K  -l/z) +b 
(4) 

+ [ I -  ( A K  -2/2) + ( A K  1/2)] y 

where 'q- '  denotes the Moore-Penrose inverse, y 

is an arbitrary vector, and I is an identity matrix. 

Substitution of equation (4) into equation (la)  

leads to 

II = 1 [  (AK_ajz) +b +{ I -  (AK -~n) + (AK -t'2) }yjT 

[(AK -:'2 ) +b +{ I -  (AK -1/2) + (AK -1,2) }y] (5) 
-- [(AK -1/2 ) +b +{ I - (AK -~/z) + (AK -m) }y] TK-i/ZF 

Minimizing equation (5) with respect to the 

arbitrary vector y and using ( A K  -1/~) ÷ ( A K  - ' z )  

(AK - '2)  +=  ( A K  - ' z )  +, the result can be written 

as 

*The general solution of Ax=b,  where A is m x n  
matrix, x and b are n x 1 and mX 1 vectors, respectively, 
can be written as 

x=A+b+L I+A+A] d 
where I is n x n identity matrix and d is nx  I arbitrary 
vector. 
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~IIy= EI -- (AK -1/2) + (AK -1,2) ] Y (6) 
- -  [ I -  (AK -1/2) ÷ (AK -112) ] K-I/2F = 0  

Solving equation (6) with respect to the arbitrary 
vector y, and utilizing LI-(AK-I/2)+(AK-'2)I 
kI - (AK -~/2) + (AK-~/2)J = [I = (AK -1'2) + (AK-~n)J 
and [I- -  (AK -~/2) + (AK -1/2) ] + = [ I -  (AK -'2) + 
(AK -~/2) ] into the result, it can be calculated as 

Y = l_I - (AK -1/2) + (AK-1/z)J K-t/ZF 
(7) 

+ ( A K  -~/2) + ( A K  -in) z 

where z is another arbitrary vector. Substituting 
equation (7) into equation (4) and arranging the 
result with (AK -ltz) + (AK -lj2) (AK -'2) += (AK -~/2) +, 

we obtain the static equilibrium equation to sat- 
isfy the constraints (3) as 

u = K - 1 F  +K-1/2 (AK -1/2) + ( b - A K - T )  (8) 

However, the derived equation (8) has a limita- 
tion not to be able to describe the static behavior 
of the substructures of rigid body modes that 
the stiffness matrix of equation (2) is positive 
semidefinite matrix with a rank deficiency of at 
most one. 

Premultiplying K on both sides of equation 

(8), the result is derived as 

K u = F + F  c (9) 

where the second term of the right-hand side 
defines the constraint force vector expressed as 

FC=K 1/2 (AK -1/2) + (b - A K - 1 F )  (I 0) 

The constraint force is the force required for 
satisfying the constraint like equation (3). In 
this study, the physical meaning of the constraint 
force was investigated. Substitution of equation 
(9) into equation (1) yields 

lI = 2 E F + F ¢ ]  rK ~EF+FC] (11) 

- [ F + F  c] T K - T  

Minimizing the potential energy with respect to 
the constraint force, i t  leads to 

OH 1 c ~ F c = K -  [ F + F  ] - K - T = K - ~ F ~ = 0  (12) 

Premultiplying K ~te on both sides of equation 
(4) and using equation (9) into equation (12), it 

follows that 

F ¢ = - F + K 1/2 (AK-1/2) +b 
(13) 

+ K 1 / 2 [ I -  (AK-1/2) + (AK-1/2)J y 

Substituting equation (13) into equation (12), 
defining Q = L I -  (AK -112) + (AK-1/2)J and Q+Q=Q, 

and solving the result with respect to the arbitrary 

vector y, it is derived as 

y=QLK-1/2F+ (AK -1/2) +bJ (14) 
+ (AK -~/2) + (AK -x/z) z 

where z is another arbitrary vector. The final 
result to substitute equation (14) into equation 
(13) defines the constraint force vector written as 
equation (10). 

From the above derivation, the constraint 
forces are defined as the minimum forces of all 
forces provided by nature to satisfy the con- 
straints. Also, it is realized that the equilibrium 
equation of constrained structures and the con- 
straint forces can be obtained by minimizing the 
total potential energy with respect to the dis- 
placement vector and the constraint force vector, 
respectively. 

3. G e n e r a l i z e d  M e t h o d  f o r  S t r u c t u r a l  

S y n t h e s i s  o f  S u b s t r u c t u r e s  

Using the proposed equation, this section 
determines the equilibrium equation of a com- 
plete structure to be composed of various sub- 
structures. Figure 1 exhibits a complete structure 

and its partitioned substructures. The equilibrium 
equation of each substructures on ns partitioned 

F i g .  1 

2 

(a) (b) 
A complete structure composed of ns sub- 
structures; (a) A complete structure, (b) ns 
substructures 
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substructures can be written in matrix form as 

KSuS--f ~, s = l ,  2, .-., ns (15) 

where _ U --/U~/' r= 

subscripts i and b represent the interior and 
boundary region of each substructures, respec- 
tively. And the vector u denotes the displacement 
vector. 

The equilibrium equation of the complete struc- 
ture is determined by applying compatibility 
conditions at the boundaries. The compatibility 
conditions are written as 

B~uS=0 " (16) 

where B s is Boolean matrix. Substitution of 

equations (15) and (16) into equation (8) yields 
the equilibrium equation of  the complete struc- 
ture. It is observed that the constrained behavior 
of structures can be easily and simply determined 
by substituting into equation (8). 

One of the substructure synthesis methods is 
static condensation method. In the following, 
the equilibrium equation by static condensation 
is derived and compared with the proposed 
method. 

Consider a simple structure subdivided into 
two substructures as shown by Fig. 2. The equi- 
librium equation of the complete structure is 

written as 

[ I~, ~ 0] [ut ]  [ftl 
Kg, K~,b+K~b K d/uq--/fq (17) 

K~b K~J[u~J [f~J 

The equilibrium equation of each substructures 
can be expressed as 

(a) (b) 

Fig. 2 A simple structure divided into two sub- 
structures; (a) A simple structure, (b) Parti- 
tioned substructures 

[ K~ Kt~lIu~] [ f~ ] (18a) 
K~,~ K~bJ Lu~J---Lf~+f~J 

K2 b K~j [ut2 ] f~ (18b) 

where fc is the constraint force vector required 
to satisfy compatibility at the boundary, and the 
superscripts 1 and 2 indicate the substructure. 
Determining the constraint force vector from 
equation (18b) and substituting the result into 
equation (18a), the equilibrium equation of the 
entire substructure is obtained by the static con- 
densation. Solving the second equation of equa- 
tion (18b) with respect to uP, it is derived as 

u~ 2= (I~li) -1 (f~_ K~bU 2) (19) 

Inserting equation (19) into the first equation of 
equation (18b), the constraint force vector is 
derived in terms of 

ff=/Kgb-Kg~(K~2~)-IK~b] uZ+KZb~(K~)-lfi z (20) 

Utilizing the equilibrium condition of the con- 
straint forces at boundaries and substituting 
equation (20) into equation (18a), the equili- 
brium equation of the complete structure is ob- 
tained as 

K~,~ K~b -Kg~+Kh(K~)-~K,~| |u~, |  

I~b K~ J/ut2J (21) 

= / f~ + KZb~ (K,~) -lff 

Although equation (21) takes another type of 
the equilibrium equation of the complete struc- 
ture, the numerical results coincide with equa- 
tion (17). 

If  the rank of stiffness matrix K in equation 
(2) is less than n, the displacement responses 
cannot explicitly be obtained because there are 
infinite numbers of the inverse matrix of K. In 
this study, the proposed equation is extended to 
the application of rigid body substructures. 

Assume that the stiffness matrix K of equation 
(2) is positive semidefinite matrix. Because the 
inverse matrix of the stiffness matrix cannot be 
obtained, equation (2) is modified. Splitting the 
stiffness matrix into the diagonal matrix I ~  and 
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off-diagonal matrix Ko, and arranging the result, 

it can be written as 

Kdu-----F- Kou (22) 

where Kd is full rank matrix. Assuming that the 
structure is constrained by the conditions like 
equation (3), and utilizing the equation (8), the 
equilibrium equation of constrained structure can 
be obtained by 

u = I ~ '  ( F - K o u )  
(23) 

+ I f j  ~/~ (AI f j  112) + [b - A K ~  1 ( F -  Kou) ] 

Arranging equation (23) with respect to the dis- 
placement vector u, the ultimate equilibrium equa- 
tion yields 

K ' u - - F *  (24) 

where 

K*=I+LI-K,Tt /2(AIL7 x/2) +A] Kg~Ko (25a) 

F* =KT~F+K~U2(AK,7 u2) + ( b - A K g T )  (25b) 

Equation (24) represents the equilibrium equa- 
tion of constrained structures including rigid 
body modes. 

The static condensation method must be one 
of the analytical methods to reduce the degree of 
freedom and to synthesize several substructures 
into an entire structure. The proposed method 
has advantages to be able to easily establish the 
equilibrium equations by simultaneously substi- 
tuting the equilibrium equations of all substruc- 
tures and constraint equations into the governing 
equation without calculating the constraint forces 
in the formulation process. 

In the following, the validity of equation (24) 
is illustrated. 

4.  A p p l i c a t i o n  I 

Consider a four-spring system described by 
the displacement vector u = E u l  u2 us u4] r as 
shown in Fig. 3. The equilibrium equation of 
this system can be written by 

-kx'Jf-k2 --k2 0 0 l r u , l  IS ,  1 

k:+k: -ks n / /":/  //2/ (26) 
o -ks ks+k,-k, / /Us/=i /s/  / /  / / / 
0 0 -- k4 k4 J L u4J L/4J 

O 

u l , f l  

Fig. 3 

2 3 4 

o ~ , o ~ o 

ks u~,--?~ k, u~,-73 k, u,,--7, 

(a) 

2 
, ~  o 
k2 u~-~2 

2 3 4 
o 

uS-Z- k3 u3,-7~ k, u,,-'-~, 

(b) 
A four-spring system ; (a) A complete spring 
system, (b) Two spring systems partitioned at 
node 2 

where ki and f ; ( i = l ,  2, 3, 4) represent the 
stiffnesses of spring and the external forces, re- 
spectively. Assume that the system is subjected to 
a constraint written by 

Ua + uz + Us+ U4=0 (27) 

The structural system constrained by equation 
(27) can be explicitly described by equation (8). 
For numerical results, the mechanical properties 
of the system were assumed as 

kl=300, kz=500, ks=600, k4=900 

fa=30, A s 2 0 ,  f~=60, f 4 = - 7 0  
(28) 

Substituting equations (26) and (27) into equa- 
tion (8), utilizing the numerical values of equa- 
tion (28) and MATLAB program, the constrain- 
ed displacement values are calculated as 

ut=0.0521, u2----0.0355 

Us=--0.015, u4= --0.0861 
(29) 

It can be observed that the final values satisfy 
the constraint equation (27). Also, the constraint 
forces are calculated by equation (10) and they 
are obtained as 

ff=f~=ff-----f~= --6.096 (30) 

For investigating the validity of the proposed 
synthesis method (24), the system was divided 
into two subsystems at node 2. The equilibrium 
equation of  each subsystems can be expressed as 
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-k2 k2 ][u2J 
(31a) 

°1[ 1 I°l k3+k4-,17,4 u3 = f3 

--k4 k4 U4 f4 

(31b) 

where u~ and u~' indicate the displacements at 
node 2 of the two subsystems, respectively. The 
flexibility matrix of equation (31b) can not be 
explicitly determined because the stiffness matrix 
is not full rank. The equilibrium equation of the 
complete system can be written as 

-kl + k2 - k z  
- &  & 

0 0 

0 0 

0 0 

o o 0 l[u~l [/,I 
0 o 0 / l u g  721 

- k 3  k3+k4 - k 4  us fs 
0 - k ,  k, JL u4J L/,J 

(32) 

Splitting the stiffness matrix into the diagonal 
matrix and off-diagonal matrix and considering 

the compatibility and constraint (27), the para- 
metric matrices of equation (25) are obtained as 

I~=diag[k~+k2 k2 & k~+k4 k4] 

'i'°° ok, 
-k~ o o o °o 

0 0 -k3 0 , A =  1 - 1 0  
1 0 1 

0 -k3 0 
0 o - k ~  

(33) 

Substituting the numerical values into equation 
(24), the final displacements are calculated as 

u1=0.0521, U6 = u6'=0.0355 

us=--0.015, u4= --0.0861 
(34) 

The results coincide with the previous results 
(29). However, the proposed method shows that 
each displacement of two subsystems at node 2 
was repeatedly calculated. Although this will 
cause the repeated calculation, the proposed me- 
thod gives the explicit solutions without depen- 
ding on any numerical analysis. Also, the time- 
consuming difficulty will be overcome by re- 
ducing the number of degrees of freedom of inte- 
rior substructures through the static condensation 
approach. 

5. Reduction of Degrees of Freedom by 
Static Condensation 

The equilibrium equations of two substructures 
as shown by Fig. 2 are written as 

[K~i Klbl[U 1] [f~] (35a) 
KbbJ LUbJ [fbJ LKh 1 , =  1 

[ Kzb Kq[uq-[° l  (35b> 
K,,] [u,J Lfd LK~b 2 2 - -  2 

Assume that the substructure 2 exhibits free 
body mode. Decomposing the interior region of 
the substructure 1 into master and slave com- 
ponents U~m and u~s, respectively, equation (35) is 

rewritten as 

]k~m k~nis k~mb 0 0 U~m l [flml 
k~,m k,½,~ k~b 0 0 U~s| I f~/ 
k!,m k~,. k~,b 0 o ilul/--/  [ (36) 

0 0 k~b k~, II u~/ 
0 0 k~kLJLu~J  Lf~J 

where the subscripts m and s denote master and 

slave modes, respectively. 
In order to eliminate the slave modes of the 

substructure 1 and all modes of the substructure 2, 
equation (36) is partitioned as 

[U~m 1 
lull 
I -- 

[k~mlm k ~  k~mb 0 oil W,|=[f,~m] (37a) 
/u~/ 
L u~J 

Ullm 1 

l ! m °//u'i/ /fo/ k k~,l~ k~b 0 
0 0 k~b k2~ u = (37b) 

0 0 kL k~J/U~| [if] 
kU~ J 

Arranging equation (37b) with respect to the 

displacement vector uc= [U~s u~ U2b U~], and ap- 

plying the results and compatibility conditions 
to equation (24), the coefficient matrices of equi- 

librium equation K*u~=F* are derived as 

K*=I+LI-K~ ' /2 (AKSUZ)+AJ  K~Ko (38a) 

F* =LI-K~ "~ (AKd uz) +A] I ~ ' F  (38b) 
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where 

LO 

1 I!k°l k~b 0 ~ 0 0 
0 k~  , K o =  0 0 k~, 

0 0 k~ 0 k2b OJ 
I 1 

F =  0 - 0 

ff 0 

Also, A is Boolean matrix. The solution of the 

equilibrium equation with respect to Uc is ob- 

tained as 

uc = (K*)-~Q (FA-Ksu~m) (39) 

where 

Q : [ I - I ~ / 2 ( A K d  -*/2) +AJ I ~  * 

FA = [f~s f~ 0 f~l ~ 

K~:  [k~m k~,m 0 0] r 

Substituting equation (39) into equation (37a) 

and arranging the result, the displacement vector 

U~m can be obtained in terms of 

U~m=R-~P (40) 

where 

R = k~m~n-KA (K*) -1QKs 

K~= Lk~,~ k ~  0 0J 

P =f~m- KA (K*) -~QFA 

Equation (40) represents the displacement vector 

of master modes to eliminate the slave mode 

displacements. The final equation exhibits that 

the static behavior of an entire structure subjected 

to linear constraints can be explained by only 

master modes from the proposed method. 

6. A p p l i c a t i o n  II 

The proposed method can be effectively applied 

to the static analysis of the structure of disturbed 

stress distribution and irregular geometry. As a 

simple application, consider a beam with a rec- 

tangular opening subjected to concentrated loads 

as shown by Fig. 4(a). The beam is fixed at an 

end and is simply supported at the other end. 

4 0  1C' ] 6 0  9 0  

. . . . . . . . . . . . . . . . . . .  " ' U  . . . . . . .  

.[ r :::: . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ¢~4!~ 

4 0 0  

(a) 

l oa f  3 loa f  

! 1 

Fig. 4 

5 t o w !  
I 

I ,S ¢o,~f 

(b) 
A beam fixed at an end and simply supported 
at the other end (unit: ram); (a) An entire 
structure, (b) Two subdivided structures 

To perform the static analysis of the entire struc- 

ture, the proposed method can be utilized by 

partitioning into two substructures and synthesi- 

zing them as shown by Fig. 4(b). Based on the 

finite element process of plane stress, the equili- 

brium equation of each substructure of Fig. 4(b) 

can be written as 

K(Du (1) = F ~1) (41 a) 

K ( 2 ) u  (2) ~-  F (2) (41 b) 

where the superscripts (1) and (2) denote the 

substructures 1 and 2, respectively. 

As a result of partitioning into two substruc- 

tures, the support condition at the interface takes 

free end. Thus, the substructure 1 is an unstable 

structure which can not independently determine 

the nodal displacements. The nodal displace- 

ments of the entire structure can be calculated by 

synthesizing the equilibrium equations of two 

substructures and the compatibility conditions at 

the interface. Applying equations (38), the static 

behavior of the entire structure can be explicitly 

determined. The following data for numerical 

output were utilized : 
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E = 2  × l0 s kgf/cm z, v=0 .3  

The nodal displacements obtained from the pro- 

posed method represent the same results as the 

finite element analysis of the entire structure not 
to be partitioned. From this application, it can be 

verified that the proposed method is applied to 

the complicated structures of geometrical irregu- 

larity and disturbed stress state. 

7. Conclusions 

This study provided the equilibrium equation 

of constrained structures composed of fixed-free 

and/or  free-free substructures. It was shown that 

the equilibrium equation of constrained structures 

and the constraint forces can be obtained by 

minimizing the total potential energy with respect 

to the displacement vector and the constraint 

force vector, respectively. The provided method 

gives the explicit solutions without depending on 

any numerical analysis and can be applied to 
the structural analysis of free-free and fixed free 

substructures with linear constraints. Although 

the proposed method requires the repeated calcu- 

lation at interface nodes of substructures, this 

difficulty will be overcome by reducing the num- 

ber of degrees of freedom of interior substruc- 
tures through the static condensation approach. 

Applications illustrated the effectiveness and 

easiness of the proposed method. It was shown 

that the static behavior of an entire structure 

subjected to linear constraints can be explained 

by only selected master modes. 
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